Ir al contenido principal

Cálculo de permutaciones con repetición

Como de costumbre, unos cuantos ejercicios relacionados con el tema explicado en la entrada anterior.

Ejercicio 1

De todas las posibles formas de rellenar una quiniela de fútbol, ¿en cuántas aparece nueve veces el 1, tres veces la X y dos veces el 2?

En las variaciones con repetición, se calculó de cuántos modos distintos rellenar una quiniela. Se impone ahora la condición de que intervengan 1,1,1,1,1,1,1,1,1, X, X, X, 2, 2. Por lo tanto, hay que calcular PR149,3,2.

PR149,3,2 = 14!/(9!3!2!) = (14·13·12·11·10·9!)/(9!3!2!)

Por lo tanto:

PR149,3,2 = (14·13·12·11·10)/(3·2·1·2·1) = 20020

Ejercicio 2

El alfabeto Morse utiliza dos signos: • –. ¿Cuántas palabras distintas se pueden escribir utilizando •••• – – – ?

Teniendo en cuenta que tanto los puntos como las rayas son indistinguibles, las posibles ordenaciones de estos siete elementos serán:

PR74,3 = 7!/4!3! = (7·6·5·4!)/(4!3!) = (7·6·5)/(3·2·1) = 35

Ejercicio 3

¿Cuántos números de 6 cifras significativas se pueden escribir con los dígitos 0, 0, 0, 3, 3 y 8?

Se trata de ordenar los dígitos anteriores de todas las formas posibles, prescindiendo de los que empiecen por 0. Pueden empezar por 3 o por 8.

Si empiezan por 3, serán PR53,1,1 puesto que quedan los elementos 0, 0, 0, 3, 8 por ordenar.

PR53,1,1 = 5!/3!1!1! = (5·4·3!)/(3!1!1!) = 20

Si empiezan por 8, serán PR53,2 puesto que quedan los elementos 0, 0, 0, 3, 3 por ordenar:

PR53,2 = 5!/3!2! = (5·4·3!)/(3!2!) = 10  

Por lo tanto, en total habrá 20 + 10 = 30 números

Comentarios

Entradas populares de este blog

Ojivas

Recibe el nombre de ojiva un gráfico que, mediante el trazado de una línea, muestra las frecuencias acumuladas de la serie. Si representa frecuencias absolutas acumuladas se llama simplemente ojiva, y si representa los porcentajes de las frecuencias relativas acumuladas se llama ojiva porcentual. Para representar una ojiva, se marcan en el eje de abscisas los valores de la variable y en el eje de ordenadas las frecuencias acumuladas. Se utiliza para representar series atemporales de frecuencia. Ejemplo Vamos a representar una ojiva de la serie correspondiente a los complementos salariales (dietas, desplazamientos...) expresados en euros de los 130 empleados y empleadas de una empresa, que aparecen reflejados en la siguiente tabla. Complementos N.º de empleados [50-60) 16 [60-70) 20 [70-80) 32 [80-90) 28 [90-100) 20 [100-110) 10 [110-120) 4 130

Polígonos de frecuencias

Un polígono de frecuencias es un gráfico que se obtiene a partir de un histograma, uniendo los puntos medios de los techos, o bases superiores, de los rectángulos. Se acostumbra a prolongar el polígono hasta puntos de frecuencia cero. Un polígono de frecuencia permite ver con gran claridad las variaciones de la frecuencia de una clase a otra. Son muy útiles cuando se pretende comparar dos o más distribuciones, ya que, así como es difícil representar dos o más histogramas en un mismo gráfico, resulta muy sencillo hacerlo con dos o más polígonos de frecuencias. La suma de las áreas de los rectángulos de un histograma de amplitud constante, es igual al área limitada por el polígono de frecuencias y el eje X. Ejemplo Vamos a construir a partir del histograma explicado en la entrada anterior , su correspondiente polígono de frecuencias. Ejemplo de polígono de frecuencias Interpretación de un polígono de frecuencias El polígono de frecuencias resume, en una sola lín

Ejemplo de tabla de frecuencia para una variable cuantitativa continua

Cuando el estudio se refiere a una variable cuantitativa continua, como el peso, la talla, velocidad, etc., o cuando tratándose de una variable cuantitativa discreta, el número de observaciones es muy grande y la cantidad de valores diferentes que toma la variable también, se recurre a agrupar los datos en intervalos. Cada uno de estos intervalos recibe el nombre de clase. Por ejemplo: En un estudio realizado sobre la estatura de cuarenta alumnos de un curso (variable cuantitativa continua, puesto que entre dos estaturas distintas puede haber un alumno que tenga una estatura intermedia), se han obtenido los siguientes resultados en metros: 1,55 1,66 1,69 1,63 1,64  1,67 1,63 1,56 1,62 1,68 1,68 1,62 1,66 1,62 1,69  1,56 1,57 1,60 1,65 1,64 1,67 1,69 1,63 1,64 1,60  1,62 1,63 1,71 1,62 1,72 1,61 1,61 1,64 1,60 1,70  1,76 1,65 1,65 1,68 1,66 Para su estudio, se procede a la agrupación de los datos en intervalos o clases. Primero se observa cuáles son los valores