Ir al contenido principal

Cálculo con factoriales

Algunos ejercicios con factoriales.

Ejercicio 1

Tenemos que simplificar la expresión 12!/10!

12!/10! = 12·11·10!/10! = 12·11 = 132

Tenemos que simplificar la expresión x!/(x + 2)!

x!/(x + 2)! = x!/[(x + 2)(x + 1)x!] = 1/[(x + 1)(x + 2)]

Ejercicio 2

¿De cuántas formas distintas pueden sentarse 8 personas en un banco? ¿Y en una mesa circular?

En el primer caso, hay que calcular todas las ordenaciones posibles de las 8 personas, es decir,

P8 = 8! = 8·7·6·5·4·3·2·1 = 40320

En el caso de una mesa circular hay que tener en cuenta que partiendo de una colocación concreta, si todas las personas se trasladan un lugar a la izquierda o a la derecha, se tiene una colocación idéntica a la de la partida, puesto que cada uno tendrá el mismo compañero a su izquierda y a su derecha; sólo ocuparán sillas distintas. Por lo tanto, en este caso, hay que fijar una persona en una posición y ordenar o permutar el resto.

P7 = 7! = 7·6·5·4·3·2·1 = 5040

Estas permutaciones se llaman circulares. Las permutaciones circulares de n elementos coinciden con las permutaciones de n - 1 elementos.

Ejercicio 3

Tenemos que calcular la suma de todos los números de cinco cifras que se pueden formar con los dígitos 1, 2, 3, 4 y 5.

Con los dígitos 1, 2, 3, 4 y 5 se pueden formar P5 = 5! = 120 números.

Para obtener su suma, hay que imaginarlos colocados en columna y calcular cuántas veces aparece cada dígito en cada lugar (unidades, decenas, centenas ...).

Cada dígito aparece en cada lugar P5/5 = 120/5 = 24 veces.

Por lo tanto, la suma de todos los números que ocupan el lugar de las unidades será:

24·1 + 24·2 + 24·3 + 24·4 + 24·5 = 360

La suma de los números que ocupan el resto de los lugares es la misma. Por lo tanto, su suma será:

360 + 360·10 + 360·100 + 360·1000 + 360·10000 = 3999960 

Comentarios

Entradas populares de este blog

Ojivas

Recibe el nombre de ojiva un gráfico que, mediante el trazado de una línea, muestra las frecuencias acumuladas de la serie. Si representa frecuencias absolutas acumuladas se llama simplemente ojiva, y si representa los porcentajes de las frecuencias relativas acumuladas se llama ojiva porcentual. Para representar una ojiva, se marcan en el eje de abscisas los valores de la variable y en el eje de ordenadas las frecuencias acumuladas. Se utiliza para representar series atemporales de frecuencia. Ejemplo Vamos a representar una ojiva de la serie correspondiente a los complementos salariales (dietas, desplazamientos...) expresados en euros de los 130 empleados y empleadas de una empresa, que aparecen reflejados en la siguiente tabla. Complementos N.º de empleados [50-60) 16 [60-70) 20 [70-80) 32 [80-90) 28 [90-100) 20 [100-110) 10 [110-120) 4 130

Polígonos de frecuencias

Un polígono de frecuencias es un gráfico que se obtiene a partir de un histograma, uniendo los puntos medios de los techos, o bases superiores, de los rectángulos. Se acostumbra a prolongar el polígono hasta puntos de frecuencia cero. Un polígono de frecuencia permite ver con gran claridad las variaciones de la frecuencia de una clase a otra. Son muy útiles cuando se pretende comparar dos o más distribuciones, ya que, así como es difícil representar dos o más histogramas en un mismo gráfico, resulta muy sencillo hacerlo con dos o más polígonos de frecuencias. La suma de las áreas de los rectángulos de un histograma de amplitud constante, es igual al área limitada por el polígono de frecuencias y el eje X. Ejemplo Vamos a construir a partir del histograma explicado en la entrada anterior , su correspondiente polígono de frecuencias. Ejemplo de polígono de frecuencias Interpretación de un polígono de frecuencias El polígono de frecuencias resume, en una sola lín

Ejemplo de tabla de frecuencia para una variable cuantitativa continua

Cuando el estudio se refiere a una variable cuantitativa continua, como el peso, la talla, velocidad, etc., o cuando tratándose de una variable cuantitativa discreta, el número de observaciones es muy grande y la cantidad de valores diferentes que toma la variable también, se recurre a agrupar los datos en intervalos. Cada uno de estos intervalos recibe el nombre de clase. Por ejemplo: En un estudio realizado sobre la estatura de cuarenta alumnos de un curso (variable cuantitativa continua, puesto que entre dos estaturas distintas puede haber un alumno que tenga una estatura intermedia), se han obtenido los siguientes resultados en metros: 1,55 1,66 1,69 1,63 1,64  1,67 1,63 1,56 1,62 1,68 1,68 1,62 1,66 1,62 1,69  1,56 1,57 1,60 1,65 1,64 1,67 1,69 1,63 1,64 1,60  1,62 1,63 1,71 1,62 1,72 1,61 1,61 1,64 1,60 1,70  1,76 1,65 1,65 1,68 1,66 Para su estudio, se procede a la agrupación de los datos en intervalos o clases. Primero se observa cuáles son los valores